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Reciprocal translocations (RecT) and Robertsonian translocations
(RobT) are among the most common chromosomal abnormalities
that cause infertility and birth defects. Preimplantation genetic
testing for aneuploidy using comprehensive chromosome screening
for in vitro fertilization enables embryo selection with balanced
chromosomal ploidy; however, it is normally unable to determine
whether an embryo is a translocation carrier. Here we report a
method named “Mapping Allele with Resolved Carrier Status ”
(MaReCs), which enables chromosomal ploidy screening and resolu-
tion of the translocation carrier status of the same embryo. We
performed MaReCs on 108 embryos, of which 96 were from 13 RecT
carriers and 12 were from three RobT carriers. Thirteen of the six-
teen patients had at least one diploid embryo. We have confirmed
the accuracy of our carrier status determination in amniotic fluid
karyotyping of seven cases as well as in the live birth we have
thus far. Therefore, MaReCs accurately enables the selection of
translocation-free embryos from patients carrying chromosomal
translocations. We expect MaReCs will help reduce the propagation
of RecT/RobT in the human population.
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Reciprocal translocation (RecT) is a category of chromosomal
abnormality in which reciprocal exchange occurs between

partial arms of any two chromosomes. Robertsonian translocations
(RobT) are a special form of RecT in which the breakpoints of the
reciprocal exchange occur in the centromere region where the long
arms of the two involved chromosomes are joined together. Unlike
RecT, RobT occurs exclusively in chromosomes 13, 14, 15, and 21.
The origin of translocations is presumably related to errors in
recombination events ocurring during gamete formation, as dem-
onstrated recently in both oocytes (1, 2) and sperms (3, 4).

RecT/RobT carriers often do not display any apparent abnormality
in daily life, as in most cases no key genes are lost in these translo-
cations. However, RecT and RobT are common anomalies that
cause birth defects and infertility (5, 6) and account for� 5% of re-
current pregnancy loss (7–11). Patients carrying an RecT or RobT
karyotype are known to have a much higher rate of chromosomal
abnormalities in their gametes or offspring (12, 13), such abnormal-
ities are often the cause of recurrent pregnancy loss or birth defects
such as Down or Patau syndrome, among many others (14, 15).

Normal embryos from chromosomal disease carriers can be
selected by preimplantation genetic diagnosis (PGD). FISH was
first used in PGD to target the two most common chromosomes
involved in translocation. Although valuable, FISH is limited to
the detection of a very few chromosomes, and since it relies on
fluorescent markers, the results are sometimes inconclusive due
to ambiguous optical signals and complex sample preparation

procedures (16–19). In the past five years, comprehensive chromo-
some screening (CCS) has been performed on all 24 chromosomes
by using comparative genomic hybridization array (CGH) or next-
generation sequencing (NGS). Multiple clinical trials suggest im-
proved per-transfer-cycle pregnancy and live-birth rates using CCS
(20, 21). In particular, the combination of CCS and NGS has been
shown to be more sensitive than the sole use of array-based methods
in detecting chromosome abnormalities (22, 23). However, while
current NGS-based CCS methods are valuable, they are still limited
to preimplantation genetic testing for aneuploidy. For example, CCS
is not able to resolve whether an embryo with balanced ploidy has
normal karyotype or is a carrier of a chromosomal translocation (18,
19, 21, 24, 25). Transferring a translocation-carrying embryo of
balanced ploidy causes propagation of the translocation karyotype
into the next generation, in addition to all the associated pregnancy
risks (26, 27). Therefore, developing an NGS-based CCS method
that can resolve the translocation-carrier status of the embryo is
highly desirable in treating translocation-carrying patients in PGD.

Efforts have been made toward using NGS to select translocation-
free embryos with normal ploidy. Liang et al. (28) used a long-
range mate-pair approach to identify translocation breakpoints in
NGS. A breakpoint is a common phenomenon that occurs during
chromosomal recombination in the process of meiosis and that can
generate hereditary abnormalities. Translocation breakpoints are
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In in vitro fertilization, it is difficult, if not impossible, with current
methods to determine whether an embryo carries a chromo-
somal translocation. We have established a method for diag-
nosing chromosome abnormality named “Mapping Allele with
Resolved Carrier Status ” (MaReCs), which enables simultaneous
screening of chromosomal ploidy and translocation in an embryo
by next-generation sequenci ng. We demonstrate and validate
that MaReCs allows accurate selection of translocation-free em-
bryos, preventing the transmission of chromosomal transloca-
tions to future generations.
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identify the haplotype linkage of the translocation allele. Then, the heterozygosity
of the informative SNPs measured in the embryos with balanced ploidy was ex-
amined by matching with the information obtained from the reference embryos,
thus determining whether the embryo carried the translocation (Fig. 3).

Validation of the MaReCs Results.MaReCs results were confirmed by routine
karyotyping examination of amniotic fluid at gestational weeks 20 (cases 34825,
35518, 38591, 38744, 39960, 40116, and 41416) and have been reconfirmed by
amniocentesis in case 38744.
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